

Systemic seismic vulnerability and risk analysis of urban systems, lifelines and infrastructures

Kyriazis Pitilakis

Aristotle University Department of Civil Engineering Laboratory of Soil Dynamics and Geotechnical Earthquake Engineering Thessaloniki, Greece

SDGEE

Earthquakes and Losses

SDGEE

Seismic risk - Overview

Recent developments in Europe regarding seismic risk assessment and mitigation

www.syner-g.eu

www.nera-eu.org

www.reaktproject.eu www.share-eu.org

www.strest-eu.org

Contents

- Typology, inventory, classification
- Fragility curves
- Seismic hazard, site effects
- Vulnerability assessment, systemic analysis, real-time assessment
- Examples
- Risk management

Elements at risk

- Buildings
- Energy systems (gas/oil, electric power)
- Water and sewage systems
- Transportation and infrastructure systems (road, railway, port, subways)
- Critical facilities (e.g. hospitals, fire fighting system)
- Industrial facilities

Refineries sub-component:		
• Cei	ntrifuges;	
• Co	mpressors;	Water and Waste-Water Systems
• Co	oling Towers;	Substation micro-components
• Cru	shers;	ker:
Cry	stallizers;	rrostor or discharger:
• Dis	tillation Towers and Pressure Vessels;	
• Ele	ctric Power Generators;	disconnect switch/horizontal sectionalizing switch;
• Tra	nsformers and Electric Motors;	connect switch/vertical sectionalizing switch;
• Ele	ctrolysis Cell;	r or autotransformer:
• Eva	aporators;	eformer:
• Filt	ers;	
• Fur	naces;	nstormer;
• Ga	s Flares;	rol house;
• Mix	ers and Blenders;	ly to protection system;
• Mo	nitoring and Control Systems;	+•
• Pip	ing and Valves;	
• Pur	nps;	t or potnead;
• Ste	am Generators;	
• Ste	am Turbines and Gas Turbines;	
Sto	rage lankers;	ank
• Wa	stewater Treatment	

Buildings

FRM/FRMM/P/E/C-CM/D/FS-FSM/RS-RSM/HL-NS/CL

- Force Resisting Mechanism (FRM) Moment Resisting Frame, Bearing Wall..
- FRM Material (FRMM) Masonry, Concrete, Fired Brick, Stone..
- Plan (P) Regular, Irregular..
- Elevation (E) Regular/irregular geometry..
- Cladding (C) Regular/irregular vertically..
- Cladding Material (CM) Fired brick, glazing, open first floor..
- Detailing (D) Ductile, non-ductile, with tie-rods..
- Floor System (FS) Rigid, flexible..
- Floor System Material (FSM) RC, steel, timber..
- Roof System (RS) Peaked, flat..
- Roof System Material (RSM) Timber, thatch..
- Height Level (HL)/Number of Stories (NS) Low, mid, high-rise, 1, 2, 3..
- Code Level (CL) None, low code, mid code, high code..

Bridges

- Material Concrete (C), Masonry (M), Steel (S), Iron (I), Wood (W), Mixed (MX)
- Type of Superstructure Girder (Gb), Arch (Ab), Suspension (Spb), Slab (Sb)
- Type of Deck Solid slab (Ss), Slab with voids (Sv), Box girder (B), Modern arch bridge (MA), Ancient arch bridge (AA)
- Deck Structural System Simply supported (SSu), Continuous (Co)
- Pier-to-Deck Connection Not Isolated (monolithic) (NIs), Isolated (through bearings) (Is)
- Type of pier to superstructure connection Single-column pier (ScP), Multi-column piers (McP)
- Number of piers for column
- Type of section of the pier Cylindrical (Cy), Rectangular (R), Oblong (Ob), Wall-type (W)
- Spans Single span (Ssp), Multi spans (Ms)
- Type of Connection to the Abutments Free (F), Monolithic (M), Isolated (Isi)
- Bridge Configuration Regular (R), Semi-regular (SR), Irregular (IR)
- Type of Foundation Shallow, Deep, Single/Multi-Pile, w/wo Caps
- Seismic Design Level No seismic design (NSD), Seismic design (SD)

SDGEE

Taxonomy - Inventory: Census, Owner/Operators

Buildings database of Vienna

- Urban Audit/EUROSTAT
- National Census
- Network operators databases

13

Inventory: Remote sensing techniques (optical, SAR etc)

- Land-uses, build-up areas,
- Building geometry
- Utility & transportation network characteristics

Systemic analysis

Fragility Curves: Review

- National projects
- Methods: Empirical, Analytical, Expert judgment, Fault tree, Hybrid
- Taxonomy/Typology issues
- Need of fragility curves for industrial facilities
- Intensity measures
- Validation studies (limited data)

Fragility curves based on pushover analysis

Pushover for appropriate lateral load distribution

Roof displacement/Total height

Fragility curves based on IDA

High rise – low code MRF

- a series of nonlinear dynamic analyses under a suite of multiply scaled ground motion records to cover the range from elasticity to global dynamic instability (*Vamvatsikos and Cornell 2002*).
 - Limit states:

IO: Immediate Occupancy

CP: Collapse Prevention

IDA curves – IO and CP limit state definition

Fragility curves based on IDA

IDA curves – CP limit state definition

Quantitative estimation of physical vulnerability

Damage states for buildings

Electric power substations

0.6

0.5

upgrading cost (millions ITL)

630

1620

ж 3420

-0- 4800

____ 5970

----- 9630

- 6420

-**-**0

Argyroudis S, Pitilakis K (2012) Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering 35: 1–12.

Bridge abutments

Argyroudis S, Kaynia AM, Pitilakis K (2013) Development of fragility functions for geotechnical constructions: application to cantilever retaining walls. Soil Dynamics and Earthquake Engineering 50: 106-116.

Road/railway embankments and trenches

Argyroudis S, Kaynia AM (2013) Analytical fragility functions for roadways and railways on embankments and in cuts for seismic shaking. Bulletin of Earthquake Engineering (submitted).

Pipelines

	Permanent soil deformation	Transient ground deformation
Hazard	surface faulting, lateral spreading due to liquefaction, landsliding	R-waves, S-waves
EQ descriptor	PGD, ground strain	PGS (strain), PGV; PGA, PGV ^{2/} PGA

SDGEE

Fault tree analysis

Pumping / Compressor stations

Storage Tanks

2-storey Masonry Buildings

4-storey Masonry Buildings

0

Frames with open ground-storey, low code

Frames with open ground-storey, high code

Fardis MN, Papailia A, Tsionis G (2012) Seismic fragility of RC framed and wall-frame buildings designed to the EN-Eurocodes. Bulletin of Earthquake Engineering, 10(6): 1767-1793

RC Buildings

Fardis MN, Papailia A, Tsionis G (2012) Seismic fragility of RC framed and wall-frame buildings designed to the EN-Eurocodes. Bulletin of Earthquake Engineering, 10(6): 1767-1793

Typology

Fragility Function Manager Tool

Store, Visualize, Manage large number of fragility functions sets

Syner-G Fragility Function Manager File Edit View Tools Help Image: Syner-G Fragility Function Manager Image: Syner-G Fragility Frager Image: Syner-G Frager						available to download at SYNER				
Aguity Functions List AmadE VAI2010-MABrick-HighPercentageVoids-2st AhmadE VAI2010-MABrick-HighPercentageVoids-4st AhmadE VAI2010-MABrick-LowPercentageVoids-4st AhmadE VAI2010-MABrick-LowPercentageVoids-4st AhmadE VAI2010-MABrick-LowPercentageVoids-4st AhmadE VAI2010-MABrick-LowPercentageVoids-4st AhmadE VAI2010-MABrick-LowPercentageVoids-4st AhmadE VAI2010-MAStone-3storeys AhmadE VAI2010-MAStone-4storeys AhmadE VAI2010-MAStone-4storeys	VaryasELAI201C-RC- Parameters Probabilistic disti Minimum IML:	ibution: Logn	ormal	cys Valucs Number Maximun	of curves: 4		Apply changes	web	page	
Ahmadetal2010-RC-Irregular-Ductile-5storeys Ahmadetal2010-RC-Irregular-Ductile-8storeys	Limit state 9	ilight	Moderate	Severe	Collapse					I
Ahmadetal2010-RC-Irregular-NonDuctile-2storeys Ahmadetal2010-RC-Irregular-NonDuctile-5storeys Ahmadetal2010-RC-Irregular-NonDuctile-8storeys	Parameters:								I	
Anmadeta/2010-RC-Regular-Ductile-2storeys Ahmadeta/2010-RC-Regular-Ductile-5storeys	Limit states	Slight	Moderate	Severe	Collapse					1
Ahmadetal2010-RC-Regular-Ductile-8storeys Ahmadetal2010-RC-Regular-NonDuctile-2storeys	Mean	0.096	0.132	0.164	0.225					ı
Ahmadetal2010-RC-Regular-NonDuctile-5storeys	StD	0.029	0.030	0.035	0.065					1
AkkarE VA2005-RC-4storeys BoraE VA2007-RC-2storeys-NonSeismicallyDesigned(c= BoraE VA2007-RC-2storeys-SeismicallyDesigned(c= BoraE VA2007-RC-2storeys-SeismicallyDesigned(c= BoraE VA2007-RC-2storeys-SeismicallyDesigned(c= BoraE VA2007-RC-2storeys-SeismicallyDesigned(c= BoraE VA2007-RC-2storeys-SeismicallyDesigned(c= BoraE VA2007-RC-4storeys-SeismicallyDesigned(c= BoraE VA2007-RC-4storeys-SeismicallyDesigned(c= B	1 09 08 07 06 0.5 0.4 0.5 0.4 0.2 0.1 0 0 0 0.1 0.1 0.1	Slight	1 0.9 0.8 0.7 0.6 0.5 0.4 0.5 0.4 0.2 0.1 0.1 0.1 0.5 0.6 0.5	Mode	rate	1	Severe 0.1 0.2 0.3 0.4 0.5 0.6	1 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0.1 0 0 0 0.1 0.2	Collapse	
Filter Remove Filter Select all										1
Compare Harmonize Remove selected									Save changes	l
en eferende 210							Acceleration: a	Velocitur cm/c	Disels service by an	

Fragility Function Manager Tool

http://www.vce.at/SYNER-G/files/downloads.html

Scope of Tool

- Allows fragility functions (currently for buildings and bridges) to be stored in a common format (xml).
- Functions can be uploaded with the tool, and stored in terms of a given taxonomy classification.
- Functions can be further harmonised in terms of intensity measure type and yield and collapse limit state definition.
- Following harmonisation, functions can be compared.
- Epistemic uncertainty can be estimated from the extracted functions (such functionality will be added to future versions of the tool).

Fragility Function Manager Tool: Buildings

Comparison of Functions

RC, MRF, mid-rise, seismically designed

Systemic analysis

Fragility Function Manager Tool: Buildings Comparison of Functions

Masonry, Low Rise

Harmonization of European fragility functions for Bridges

Minor damage state (a) and collapse damage state (b) harmonised fragility functions for reinforced concrete, isolated, regular/semi-regular bridges
REAKT

Time dependent risk assessment

0

Time-dependent vulnerability

Aging effects

- progressive deterioration of the material properties caused by aggressive environmental attack

- strength degradation: reduction in the overall stiffness and ductility

State vulnerability (cumulative effects)

- effects of cumulative seismic damage
- capacity reduction, degradation of mechanical properties

Presently available fragility curves for civil engineering structures subjected to seismic hazard <u>do not account</u> for these two important parameters.

Time - dependent fragility curves for fixed base RC MRF structures

Effect of corrosion (t= 25, 50, 75 years)

Fixed base high rise MRF with low code seismic provisions

Pitilakis K.D, Karapetrou S.T, Fotopoulou S.D (2013) Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings, Bulletin of Earthquake Engineering (submitted)

Time - dependent fragility curves with SSI

Time-dependent fragility curves in terms of PGA for the analyzed *fixed base and SSI* structural configurations of the high rise structure designed with low seismic code provisions for the initial (t=0years) and corroded (t=50years) scenario

of aging and SSI effects on seismic vulnerability assessment of RC buildings, Bulletin of Earthquake Engineering (submitted)

ً⊛

AHEPA hospital – instrumentation

AHEPA hospital – Ambient noise

 $(\mathbf{\Theta})$

AHEPA hospital – Modal parameter identification

AHEPA hospital – Modal parameter identification

- Extensive parametric study of the hospital building considering the variation in structural parameters (e.g. Modulus of elasticity) investigating the sensitivity of the model to material properties and how the latter affect the overall stiffness of the structure.
- "New" updated FE model derived from the extended parametric study, that is closer to the experimental data than the initial model. More reliable modeling using field monitoring data taking into account material strength degradation and potential existing structural damage.

• Non-linear dynamic analysis (IDA) of the "new" updated FE model of the hospital building to derive the "real-time" fragility curves.

Typology Fragility curves

Deriving Design Spectrum Parameters

Design spectrum (for shorter periods) is defined by four parameters:

- F0 (Effective Amplification)
- TB (Constant Acceleration corner period)
- TC (Constant Velocity corner period)
- TD (Constant Displacement corner period)

Design Spectrum for Thessaloniki

Design Spectrum Parameters

Sd (10.0 s)

Return Period = 475 years

Active Shallow regions only, 50° - with

Cauzzi & Faccioli (2008)

and Chiou & Youngs (2008) each with 0.5 weighting

Examples

K-value (PGA) for Thessaloniki

Spectrum Intensity

- Area Source Model
- Derived from UHS for 475 year return period

Velocity Spectrum 70° -Intensity 60° 50° Area Source Model 40° Derived from UHS for

475 year return period

SHARE

Improved Soil Factors for EC8 soil classification

Proposed soil factors

Table 14 Soil factors for EC8 soil classes

Soil class	Type 2 ($M_s \leq 5.5$)		Type 1 ($M_s > 5.5$)	
	Proposed	EC8	Proposed	EC8
В	1.40	1.35	1.30	1.20
С	2.10	1.50	1.70	1.15
D	1.80 ^a	1.80	1.35 ^a	1.35
Е	1.60 ^a	1.60	1.40 ^a	1.40

^asite specific ground response analysis required

Pitilakis K, Riga E, Anastasiadis A (2012) Design spectra and amplification factors for Eurocode 8, Bulletin of Earthquake Engineering 10(5): 1377-1400.

New soil classification scheme

Pitilakis K, Riga E, Anastasiadis A (2013) New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering 11(4): 925-966.

New soil classification scheme for EC8

New elastic acceleration response spectra for EC8

Pitilakis K, Riga E, Anastasiadis A (2013) New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering 11(4): 925-966.

Period-dependent amplification factors

EC8

Improved EC8

Median PGA (g)

Development of Shake-Fields

- Stochastic Simulation
- Generation of spatially correlated and cross-correlated fields for ground motion intensity measures (IMs) – i.e. PGA, PGV, Sa, etc
- Multiple source typologies
 - Area Sources
 - Simple Fault Sources
 - Complex Fault Sources
- Site effects
- Extension to geotechnical hazard (liquefaction, fault crossing, landslide displacements)

Туроlоду	/ Fragility cur	ves Seism	ic hazard S	ystemic analysis
System	Sub-System	Common IM's	Recommended IM	
Building	Masonry Reinforced Concrete	S _a , S _d , PGA, I _{EMS} S _a , S _d , PGA, PGV,	S _a [S _d] S _a [S _d]	
	Steel Timber/Wood	S _a , S _d S _a , S _d , PGA, PGV	S _a [S _d] S _a [S _d]	oart
Transportation	Bridges	PGA, PGV, S _a , SI, PGD _f	PGA, S _a , PGV _f	Eart
	Tunnels Roads Railway Tracks System Facilities	PGA, PGD _f PGD _f , PGV PGD _f PGA, PGD _f	PGA, PGD _f PGD _f PGD _f PGA, PGD _f	n
Water [Potable and Waste]	Source (wells) Treatment Plant Pumping Station Storage Tanks	PGA PGA PGA PGA, [PGD _f if	PGA PGA PGA PGA	- bes ead
	Pipelines	PGV, PGD _f , PGA, ε,	PGV, PGD _f	- mir
	Canal Tunnel Waste Water Treatment	PGV, PGD _f PGA PGA	PGV, PGD _f PGA PGA	res
Harbour	Waterfront Structures Cargo Handling/Storage Fuel Facilities	PGA, PGD _f PGA, PGD _f PGA	PGA, PGD _f PGA, PGD _f PGA	- der
Electrical	Substations and Components Distribution Circuits	PGA, S _a , PGD _f PGA	PGA	
Gas and Oil	Production Storage	PGA, PGD _f PGA, [PGD _f if below ground]	PGA, PGD _f PGA	
	Pipelines Pumping/Compression	PGV, PGD _f , ε, PGA, SI PGA	PGV, PGD _f PGA	
Miscellaneous	Non-structural Hospitals Communication Airport	PGA, PFA PGA, PFA, S _a , I _{MM} PGA PGA, PGD _f , S _a	PFA [S _a or S _d to de structural response] PGA, PFA PGA, PFA PGA, PGD _f [runways]	efine I, Sa
			[irregular buildings - control towers]	e.g.

Appropriate earthquake intensity measures (IM)

Examples

Risk management

- best captures the response of each element
- minimizes the dispersion of response
- depends on the approach for derivation of fragility curves

Intensity Measure Types- Fragility functions for Buildings

Systemic analysis

SYNER-G methodology

Each system is specified with its:

- Components
- Solving algorithms Interactions between components
- Performance indicators
- Interactions with other systems

Uncertainty

Interactions - Impacts

0

SDGEE

Application in Thessaloniki

Hazard Definition & **Seismic Intensity** Measures (IM)

Seismic hazard – PGA at rock (Tm=500 years) SHARE 2013

Application in Thessaloniki

Inventory Selection

Hazard Definition & Seismic Intensity Measures (IM)

12

Sub-City Districts – European Urban Audit (Eurostat)

11

20 Sub Districts

ID	SCD name	Population
0	Ladadika-Dikastirion squ.	15868
1	St.George-Rotonda	19260
2	University-Int.Exhib.Center-White Tower	21376
3	PAOK-Malakopi	21376
4	Papafio-St.Constantine-Military Hospital	17385
5	Toumba-St.Fanourios-Ydragogio	18542
6	Vlatadon-St.Dimitrios-Lachanagora	16319
7	Municipal Hospital-Fylakes (Penitentiary)	16709
8	Athinon	18860
9	Analipsi-Dermatologiko	19619
10	Nea Paralia-Municipal Library	20134
11	Railway Station-Xirokrini	16669
12	Pasha Hamam-Tyroloi	15454
13	Charilaou-Exohes	26815
14	Nomarchia-Vafopoulio-Depau	25455
15	School for the blind-Sailing Club	15822
16	Constantinoupoleos-Delfon-Botsari	16761
17	Ippokratio	16712
18	Ecclesiastic School-Kato Toumba	20724
19	Makedonia Palace-Paedagogiki Academia	16729

Urban Audit boundaries

0 375 750 1,500 Meters

0

Building Stock – Study area

- buildings blocks (study area): 2,893
- buildings (study area): 27,738 (92% R/C, 8% masonry)
- inhabitants: 376,589 (municipality), 790,824 (city)

Building inventory – Typology

Road Network of Thessaloniki

Electric Power Network of Thessaloniki

Water Supply System of Thessaloniki

Simplified network

Features:

- <mark>21</mark> pumps
- 11 tanks
- pipes ~280 km
- 437 demand nodes

Application in Thessaloniki

Buildings in Thessaloniki – Fragility curves

0.2

0.0

0.0

-DG=4

1.0

0.8

0.6

0.4

 $S_{a,eff} = 2.5\alpha_q/q(DG)$ (g)

Bridges in Thessaloniki – Fragility curves

(a) bridge with the deck supported on bearings, constructed in 1985 with the old seismic code(b) overpass with monolithic deck-pier connection, constructed in 2003 with the new seismic code

Application in Thessaloniki

Road network connectivity

Simple Connectivity Loss (SCL): Connectivity loss between TAZs

Weighted Connectivity loss (WCL): Weighted (over travel speed) connectivity loss between TAZs

Electric power network connectivity

- Three **nested sub-networks** with independent connectivity analyses:
 - generators transmission subst.
 - transmission subst. distribution subst.
 - distribution subst.- demand nodes

- PI = fraction of supplied (non-isolated) demand nodes

Water supply network connectivity

Application in Thessaloniki

 $0.255 \times 10^{-03} \times 790.824 = 201$ deaths

Losses for Tm=500yrs (Building damages) 5 seismic zones (10,000 runs)

Losses for Tm=500yrs (Deaths) 5 seismic zones (10,000 runs)

0

Losses for Tm=500yrs (Displaced people) 5 seismic zones (10,000 runs)

Correlation of blocked roads to network

Road Network Risk Curve

Electric Power Network Losses for Tm=500 years of ECL

Correlation of broken substations to network connectivity

Water Supply System of Thessaloniki - Average Losses

Correlation of damaged pipes & broken EPN transmission stations to network connectivity

22°52'0"E 22°53'0"E 22°54'0"E 22°55'0"E 22°56'0"E 22°57'0"E 22°58'0"E 22°59'0"E 23°0'0"E 23°1'0"E

Systemic analysis

Examples

Risk management

Water Supply System -Losses for Tm= 500 years of WCL

Water Supply System Risk Curve

Effect of interaction with Electric Power Network

Thessaloniki Harbor

General description:

- Size of served area ~ 80km²
- Size of area: 1,500,000 m²
- Trade cargo: 16,000,000 tons
- Capacity: 370,000 TEUs containers
- 6 piers
- 6,500m waterfronts length

Elements at risk

- Waterfront structures
- Cargo transfer & handling equipment
- Electric power network
- Potable & waste water networks
- Telecommunication system
- Railway & roadway systems
- Buildings & critical facilities

Performance Indicators

Container terminals

Containers handled (loaded and unloaded) per day, in TEUs

- Terminal: total number of TEU (TCoH)
- Gate: movements (TCoM)
- Bulk cargo terminals

Cargo handled (loaded and unloaded) per day, in tones

- Terminal: total cargo (TCaH)
- Gate: movements (TCaM)

Application to Thessaloniki port

PI s (max) (max capacity for non-seismic conditions): -*TCoH* = 1032 *TEU/day* -*TCaH* =43512 *tons/day*

Average losses (MCS, 10,000 runs)

Application results, MCS simulation (10,000 runs)

Correlation of damaged cranes to port functionality (cargo handled)

Correlation of not-functional distr. substations to port functionality (cargo handled)

Normalized TCoH Performance Loss

Physical and Social Model Interactions in SYNER-G

Examples

Risk management

Framework for Obtaining Shelter Needs Index

Shelter needs

Q)

Typology Fragility curves Seismic hazard Systemic analysis Examples Risk managemer

Accessibility to hospitals

Based on:

road blockages due to building collapses and bridge/road damages

Recovery time (in the case of 100% recovery)

Resilience referring to a system subjected to natural and/or manmade hazards usually goes towards its capability to recover its functionality after the occurrence of a disruptive event. It is affected by attributes of the system, namely: robustness (residual functionality right after the disruptive event), rapidity (recovery rate), resourcefulness and redundancy (Bruneau et al. 2003)

Before the earthquake

1. Time dependent seismic hazard assessment for a given site

2. Time dependent vulnerability assessment of buildings and infrastructures

3. Develop and store multiple seismic risk scenarios (different seismic sources)

During the earthquake (Earthquake Early Warning – EEW)

Systemic analysis

1. Selection of the "matching" seismic scenario based on the real time estimation of the earthquake Magnitude and Epicenter

Fragility curves

Typology

2. Retrieve in "real time" the stored maps with estimated damages and losses to support the crisis management

Seismic hazard

3. Real time measurements (e.g. gas system, railways, elevators, chemical industries, nuclear power facilities, hospitals)

Examples

SYNER-G web portal http://www.syner-g.eu

SYNER-G Books

g₂ Pitilakis · Crowley · Kaynia Eds

K. Pitilakis H. Crowley A.M. Kaynia *Editors*

SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk

Geotechnical, Geological and Earthquake Engineering

Buildings, Lifelines, Transportation Networks and Critical Facilities

별두 Pitilakis·Franc 영두 Wenzel *Eds*.

67

SYNER-G: Systemic Seismic Vulnerability and Risl Assessment of Complex Urban, Utility, Lifeline Systems and Critical Facilities Geotechnical, Geological and Earthquake Engineering

K. Pitilakis · P. Franchin B. Khazai · H. Wenzel *Editors*

SYNER-G: Systemic Seismic Vulnerability and Risk Assessment of Complex Urban, Utility, Lifeline Systems and Critical Facilities

Methodology and Applications

SDGEE

Deringer

Thank you

谢谢

謝謝

Ευχαριστώ

